Käyttöopas, v1.2 – SSL SPEKTRI 80

1.1 SPEKTRI 80 ja näyttölaitteen paritus (Tablet tai älypuhelin)

- Kytke SPEKTRI 80 virtanapista.
- Valitse näyttölaitteen Bluetooth (BT) asetukset.
- Valitse BT laite listasta, joka täsmää SPEKTRI 80 laitteesi sarjanumeron kanssa.

1.2 SPEKTRI 80 ja näyttölaitteenyhdistäminen

- Kytke SPEKTRI 80 päälle, jos painokytkimen merkki-LED ei ole päällä. Jos merkki-LED ei kytkeydy päälle painettaessa kytkintä, SPEKTRI 80:n akku tarvitsee ladata.
- Varmista että SPEKTRI 80 ja näyttölaite on paritettu.
- Klikkaa SPEKTRI sovelluksen 🍑 -painiketta.
- Valitse listasta SPEKTRI 80 laitetta vastaava sarjanumero.
- Kun SPEKTRI 80 on liitetty näyttölaitteeseen,"Connected" tila on näkyvissä.

2. Mittaaminen

- Ennen mittausten aloittamista, SPEKTRI täytyy olla liitettynä näyttölaitteeseen (ks.1.2).
- Osoita valkoinen mittapää kohti mitattavaa valoa.
 - Measure
 - Kosketa painiketta SPEKTRI 80 integroi valosignaalia.
 - Kun valosignaali on tarpeeksi vahva, SPEKTRI 80 lähettää mittausdatan BT:n kautta näyttölaitteelle.
 - Mittausaika lyhenee valotason noustessa ja pitenee sen laskiessa.
- Voit halutessasi muuttaa analysoitavaa aallonpituus aluetta Conf välilehdellä muuttamalla "WL range" aallonpituusarvoja.

3. Mittaustulosten avaaminen ja tallentaminen

3.1 Datan tallentaminen

- Valitse **Conf** välilehti
- Lisää haluamasi tiedostonimi tekstikenttään.
- Kosketa -painiketta.
 - o Mittaustiedosto tallennetaan näyttölaitteen sisäisen muistin juurihakemistoon.

Saat jaettua näyttökuvan tämänhetkisestä näkymästä painamalla 🔇 - painiketta.

3.2 Tulosten avaaminen ja poistaminen

- Edellisten tulosten lataaminen voidaan ladata koskettamalla vasemmassa alanurkassa olevaa > painiketta.
- Ponnahdusikkuna avataan, jossa muistissa olevat mittaukset näytetään.
- Avatun mittauksen nimi näytetään 🧮 ja 🛈 -painikkeiden välissä.
- Halutut tulokset voidaan poistaa muistista koskettamalla 🛈 painiketta ja kaikki muistissa olevat mittaukset voidaan poistaa koskettamalla 🛈 -painiketta kauan.

3.3 Mittauksen kommenttikentän muuttaminen

- Kunkin mittauksen nimi voidaan vaihtaa oletusarvosta (päivä ja aika) koskettamalla
 painiketta.
- Ponnahdusikkuna avautuu, jossa uusi nimi voidaan asettaa.
- Uusi nimi tallennetaan mittaustiedoston ensimmäiseen sarakkeeseen. Mittauksen kommenttinimi näkyy myös vertailutaulukossa ja valitus mittauksen nimikentässä (**Conf** -välilehti).

4. Results

4.1 Spectral radiation (Spec)

Quantity	Unit	Description
Irradiance, $E_{\rm e}(\lambda)$	mW/c m ²	Total optical power per area received by a surface. It is calculated as a sum of all wavelengths in WL range of 380-780nm.
Peak wavelength, λ_p	nm	The wavelength where the maximum irradiance is recorded.
Effective wavelength, λ_{eff}	nm	Average wavelength $\lambda_{eff} = \frac{\int \lambda E_e(\lambda) d\lambda}{\int E_e(\lambda) d\lambda}$

4.2 Light and photometry

	Quantity U	Unit	Description
--	------------	------	-------------

Käyttöopas, v1.2 – SSL SPEKTRI 80

Ev, Illuminance	lx, lm/m ²	Illuminance is the optical power density coming to the surface as seen by human eye. It is calculated with the convolution of spectral irradiance and the V(λ) CIE 1924 spectral sensitivity function of a standard observer under daylight conditions: $E_v = 683 \int V(\lambda) E_e(\lambda) d\lambda$
CCT, Correlated color temperature	К	The temperature of the Planckian radiator (Such as incandescent lamp) whose perceived color is most closely resembled to that of the test source. The analysis is given in CIE1976 u'v' color diagram.
BLH	mW/ m ²	Spectral irradiance weighted by blue light hazard action spectrum (EN 62471)
EML	lx	Melanopic illuminance for measure of nonvisual effects related to circadian lighting. It is calculated with the convolution of spectral irradiance and melanopic sensitivity function having a peak WL at 480nm.

4.3 Color parameters

Quantity	Unit	Description
Color Rendering index, CRI		Special CRIs (Ri) and general CRI(Ra) is calculated according to CIE 15.2.
		Ra is average of special CRIs R1-8
х, у		Color coordinates in CIE 1931 color diagram
u', v'		Color coordinates in CIE 1976 color diagram
SDCM		Deviation of the color point of the test source from the target color according to the ANSI C78.377-2017. 1 SDCM = 0.001 color shift in u'v'.

4.4 Flicker

Quantity	Unit	Description
Percent Flicker /	%	Relative measure of the cyclic variation in the output of a light

SSL

Käyttöopas, v1.2 – SSL SPEKTRI 80	RESOURCE
Modulation Index MI	source (i.e. percent modulation). It is calculated as follows: Light modulation around the mean value: $\Delta = \frac{E_{v,max} - E_{v,min}}{2}$ Mean illuminance $E_{v,mean} = \frac{E_{v,max} + E_{v,min}}{2}$ $MI = \frac{\Delta}{E_{v,mean}} * 100\% = \frac{E_{v,max} - E_{v,min}}{E_{v,max} + E_{v,min}} * 100\%$
Flicker index, FI	Other measure of the cyclic variation in the output of various sources. This metric takes into account the shape of the temporal light signal. It is calculated as $FI = \frac{Area1}{Area1 + Area2}$
Flicker frequency Hz	The number of occurrences of temporal light signal per unit of time.

≪|SSL